On Algebraic Structure of Improved Gauss-Seidel Iteration
نویسندگان
چکیده
Analysis of real life problems often results in linear systems of equations for which solutions are sought. The method to employ depends, to some extent, on the properties of the coefficient matrix. It is not always feasible to solve linear systems of equations by direct methods, as such the need to use an iterative method becomes imperative. Before an iterative method can be employed to solve a linear system of equations there must be a guaranty that the process of solution will converge. This guaranty, which must be determined apriori, involve the use of some criterion expressible in terms of the entries of the coefficient matrix. It is, therefore, logical that the convergence criterion should depend implicitly on the algebraic structure of such a method. However, in deference to this view is the practice of conducting convergence analysis for GaussSeidel iteration on a criterion formulated based on the algebraic structure of Jacobi iteration. To remedy this anomaly, the GaussSeidel iteration was studied for its algebraic structure and contrary to the usual assumption, it was discovered that some property of the iteration matrix of Gauss-Seidel method is only diagonally dominant in its first row while the other rows do not satisfy diagonal dominance. With the aid of this structure we herein fashion out an improved version of Gauss-Seidel iteration with the prospect of enhancing convergence and robustness of the method. A numerical section is included to demonstrate the validity of the theoretical results obtained for the improved Gauss-Seidel method. Keywords—Linear system of equations, Gauss-Seidel iteration, algebraic structure, convergence.
منابع مشابه
A Preconditioner Selection Heuristic for Efficient Iteration with Decomposition of Arithmetic Expressions for Nonlinear Algebraic Systems
We have recently considered decomposing a system of nonlinear equations by defining new variables corresponding to the intermediate results in the evaluation process. In that previous work, we applied both a derivative-free component solution process and an interval Gauss–Seidel method to the large, sparse system of equations so obtained. An analysis of the component solution process indicates ...
متن کامل1 Linear Equation Systems in the Numerical So
1 Linear Equation Systems in the Numerical Solution of PDE’s 3 1.1 Examples of PDE’s . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Weak Formulation of Poisson’s Equation . . . . . . . . . . . . 6 1.3 Finite-Difference-Discretization of Poisson’s Equation . . . . . 7 1.4 FD Discretization for Convection-Diffusion . . . . . . . . . . 8 1.5 Irreducible and Diagonal Dominant Matrices . . . ...
متن کاملAn Extrapolated Gauss - Seidel Iteration for Hessenberg Matrices
We show that for certain systems of linear equations with coefficient matrices of Hessenberg form it is possible to use Gaussian elimination to obtain an extrapolated version of the Gauss-Seidel iterative process where the iteration matrix has spectral radius zero. Computational aspects of the procedure are discussed.
متن کاملA Multi-Level Method for the Steady State Solution of Markov Chains
This paper illustrates the current state of development of an algorithm for the steady state solution of continuous-time Markov chains. The so-called multi-level algorithm utilizes ideas from algebraic multigrid to provide an efficient alternative to the currently used Gauss-Seidel and successive overrelaxation methods. The multi-level method has been improved through several iterations, so tha...
متن کاملCombining Performance Aspects of Irregular Gauss-Seidel Via Sparse Tiling
Finite Element problems are often solved using multigrid techniques. The most time consuming part of multigrid is the iterative smoother, such as Gauss-Seidel. To improve performance, iterative smoothers can exploit parallelism, intra-iteration data reuse, and inter-iteration data reuse. Current methods for parallelizing Gauss-Seidel on irregular grids, such as multi-coloring and ownercomputes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014